QFT Generalizations via Taylor Expansion Cognitive Framework

I. Mathematical Framework and Established Physics

1.1 The Effective Field Theory Framework (Established)

The effective field theory (EFT) approach is a well-established framework in particle physics. The Standard Model Lagrangian can be systematically extended with higher-dimension operators:

\[\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{d=5}^{\infty} \sum_i \frac{c_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}\]

where:

Domain of Validity: This expansion converges for energies $E \ll \Lambda$. Current LHC constraints place $\Lambda \gtrsim 1-10$ TeV for most operators.

1.2 Types of Expansions in QFT

1. Perturbative Expansions (Established)

2. Derivative Expansions (Established)

3. Large-N Expansions (Established)

II. Concrete Example 1: Higgs Effective Field Theory (Established)

2.1 Mathematical Framework

After integrating out heavy new physics at scale $\Lambda$, the Higgs sector is described by:

\[\mathcal{L}_{\text{Higgs EFT}} = \mathcal{L}_{\text{SM}} + \frac{c_H}{\Lambda^2} \mathcal{O}_H + \frac{c_{HW}}{\Lambda^2} \mathcal{O}_{HW} + \frac{c_{HB}}{\Lambda^2} \mathcal{O}_{HB} + \cdots\]

Key dimension-6 operators:

2.2 Experimental Constraints

Current LHC Bounds (Run 2, 139 fb⁻¹):

This translates to $\Lambda > 0.5-1.5$ TeV assuming $c_i \sim 1$.

2.3 Future Experimental Sensitivity

HL-LHC Projections (3000 fb⁻¹):

FCC-ee Projections:

2.4 Observable Effects

The operator $\mathcal{O}_H$ modifies the Higgs self-coupling: \(\lambda_{hhh} = \lambda_{\text{SM}} \left(1 + \frac{3 c_H v^2}{\Lambda^2}\right)\)

For $c_H = 1$ and $\Lambda = 1$ TeV:

III. Concrete Example 2: Chiral Perturbation Theory (Established)

3.1 Mathematical Framework

Low-energy QCD is described by an expansion in $p/\Lambda_\chi$ and $m_q/\Lambda_\chi$:

\[\mathcal{L}_{\chi PT} = \mathcal{L}^{(2)} + \mathcal{L}^{(4)} + \mathcal{L}^{(6)} + \cdots\]

Leading order ($\mathcal{O}(p^2)$): \(\mathcal{L}^{(2)} = \frac{f_\pi^2}{4} \text{Tr}[\partial_\mu U \partial^\mu U^\dagger] + \frac{f_\pi^2 B_0}{2} \text{Tr}[M_q (U + U^\dagger)]\)

where $U = \exp(2i\pi^a T^a/f_\pi)$, $f_\pi \approx 93$ MeV.

Next-to-leading order ($\mathcal{O}(p^4)$): 10 low-energy constants (LECs) $L_1, \ldots, L_{10}$.

3.2 Convergence Properties

The expansion parameter is $p/(4\pi f_\pi) \approx p/(1.2\text{ GeV})$.

Pion-pion scattering amplitude: \(A(s,t,u) = \frac{s}{f_\pi^2} + \frac{1}{96\pi^2 f_\pi^4}[s^2 \log(s/\mu^2) + t^2 \log(t/\mu^2) + u^2 \log(u/\mu^2)] + \mathcal{O}(p^6)\)

Convergence breakdown at $\sqrt{s} \sim 4\pi f_\pi \approx 1.2$ GeV (ρ meson mass).

3.3 Experimental Tests

Pion decay constant: $f_\pi = 92.21(14)$ MeV (0.15% precision)

Pion-pion scattering lengths (in units of $m_\pi^{-1}$):

Kaon decays: $K \to \pi\pi$ amplitudes test χPT to 1% level.

IV. Concrete Example 3: Non-Commutative QFT (Plausible/Speculative)

4.1 Mathematical Framework

Status: Theoretically motivated by string theory, but no experimental evidence.

Spacetime coordinates satisfy: \([\hat{x}^\mu, \hat{x}^\nu] = i\theta^{\mu\nu}\)

The Moyal product replaces ordinary multiplication: \(f \star g = f \exp\left(\frac{i}{2} \overleftarrow{\partial_\mu} \theta^{\mu\nu} \overrightarrow{\partial_\nu}\right) g\)

Expansion in powers of $\theta$: \(f \star g = fg + \frac{i}{2}\theta^{\mu\nu} \partial_\mu f \partial_\nu g - \frac{1}{8}\theta^{\mu\nu}\theta^{\rho\sigma} \partial_\mu \partial_\rho f \partial_\nu \partial_\sigma g + \mathcal{O}(\theta^3)\)

4.2 QED on Non-Commutative Spacetime

The action becomes: \(S_{NC-QED} = \int d^4x \left[-\frac{1}{4}F_{\mu\nu} \star F^{\mu\nu} + \bar{\psi} \star (i\gamma^\mu D_\mu - m) \psi\right]\)

Leading correction to electron-photon vertex: \(\delta\Gamma^\mu = -\frac{e^3}{48\pi^2} \theta^{\alpha\beta} k_{1\alpha} k_{2\beta} \gamma^\mu\)

4.3 Experimental Constraints

Current bounds (assuming $\theta^{0i} = 0$):

Future sensitivity:

4.4 Quantitative Predictions

For $\sqrt{|\theta|} = 10^{-19}$ m:

V. Systematic Classification of QFT Extensions

5.1 Established Extensions

  1. Effective Field Theory: Well-defined, experimentally tested
  2. Chiral Perturbation Theory: Convergent below 1 GeV
  3. Heavy Quark Effective Theory: Systematic $1/m_Q$ expansion
  4. NRQCD/NRQED: Non-relativistic expansions

5.2 Plausible Extensions

  1. Higher-dimension operators: Constrained by precision tests
  2. Modified dispersion relations: Constrained by astrophysics
  3. Lorentz violation: Severely constrained but not ruled out

5.3 Highly Speculative Extensions

  1. Non-commutative geometry: No experimental evidence
  2. Fractional derivatives: Mathematical curiosity
  3. Emergent spacetime: Highly speculative

VI. Conclusions


The Taylor expansion framework provides a systematic way to understand QFT generalizations:

  1. Established Success: EFT and χPT demonstrate the power of systematic expansions with clear convergence properties and experimental validation.

  2. Future Prospects: Next-generation experiments will probe higher-order operators with unprecedented precision, potentially revealing new physics at the TeV scale.

  3. Theoretical Guidance: The framework helps organize our thinking about beyond-Standard Model physics, but must be grounded in experimental reality.

  4. Clear Limitations: Not all physics can be captured by Taylor expansions, and convergence must be carefully analyzed in each case.

    VII. Comparative Analysis and Summary

    7.1 Summary Table: QFT Expansion Frameworks

    | Framework | Expansion Parameter | Convergence Radius | Current Experimental Status | Key Observable | |———–|——————-|——————-|—————————|—————-| | QED Perturbation Theory | $\alpha \approx 1/137$ | Asymptotic series | Tested to $10^{-12}$ precision | $g-2$ of electron | | QCD Perturbation Theory | $\alpha_s(M_Z) \approx 0.12$ | Asymptotic for $E > 2$ GeV | Tested to 1% at LHC | Jet cross sections | | Chiral Perturbation Theory | $p/(4\pi f_\pi) \approx p/1.2$ GeV | $p < 1$ GeV | Tested to 0.1% precision | $\pi\pi$ scattering | | Heavy Quark EFT | $\Lambda_{QCD}/m_Q$ | $m_Q > 1$ GeV | Tested to 1% for $b$ quarks | $B$ meson decays | | Higgs EFT | $v^2/\Lambda^2$ | $\Lambda > 1$ TeV | Constraints: $\Lambda > 0.5-1.5$ TeV | Higgs couplings | | SMEFT (dim-6) | $E^2/\Lambda^2$ | $E < \Lambda$ | Bounds: $\Lambda > 1-10$ TeV | Triple gauge couplings | | Non-commutative QFT | $p^2\theta$ | $p < 1/\sqrt{|\theta|}$ | Bounds: $\sqrt{|\theta|} > 10^{-19}$ m | Modified dispersion | | Large-N QCD | $1/N_c$ | Asymptotic | $N_c = 3$ in nature | Meson spectrum |

    7.2 Flowchart: Systematic EFT Construction

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    
    ┌─────────────────────────────────┐
    │   1. Identify Degrees of Freedom │
    │      and Symmetries              │
    └────────────┬────────────────────┘
              │
              ▼
    ┌─────────────────────────────────┐
    │   2. Choose Power Counting       │
    │      Scheme                      │
    │   • Identify small parameters    │
    │   • Assign scaling dimensions    │
    └────────────┬────────────────────┘
              │
              ▼
    ┌─────────────────────────────────┐
    │   3. Construct Operator Basis    │
    │   • List all allowed operators   │
    │   • Remove redundancies via EOM  │
    │   • Apply integration by parts   │
    └────────────┬────────────────────┘
              │
              ▼
    ┌─────────────────────────────────┐
    │   4. Match to UV Theory          │
    │   • Calculate Wilson coefficients│
    │   • Run to low energy scale      │
    └────────────┬────────────────────┘
              │
              ▼
    ┌─────────────────────────────────┐
    │   5. Compute Observables         │
    │   • Organize by power counting   │
    │   • Include loop corrections     │
    └────────────┬────────────────────┘
              │
              ▼
    ┌─────────────────────────────────┐
    │   6. Fit to Experimental Data    │
    │   • Extract LECs                 │
    │   • Assess convergence           │
    └─────────────────────────────────┘
    

    7.3 Wilson Coefficient Correlations

    Correlation Matrix Structure In SMEFT, Wilson coefficients are not independent due to:

  5. SU(2)×U(1) gauge invariance: Links operators in the same gauge multiplet
  6. Flavor symmetries: Relates coefficients across generations
  7. Experimental observables: Multiple operators contribute to same process Example: Higgs-Gauge Sector Correlations The operators $\mathcal{O}{HW}$, $\mathcal{O}{HB}$, and $\mathcal{O}_{HWB}$ are correlated through: \(\begin{pmatrix} \delta g_{hZZ} \\ \delta g_{hWW} \\ \delta g_{h\gamma\gamma} \end{pmatrix} = \begin{pmatrix} c_W^2 & s_W^2 & -2s_Wc_W \\ 1 & 0 & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} c_{HW}/\Lambda^2 \\ c_{HB}/\Lambda^2 \\ c_{HWB}/\Lambda^2 \end{pmatrix}\) where $s_W = \sin\theta_W$, $c_W = \cos\theta_W$. Global Fit Results (Current LHC data):
    • Strong correlation ($\rho > 0.8$) between $c_{HW}$ and $c_{HWB}$
    • Measuring $h\to\gamma\gamma$ constrains linear combination
    • Individual extraction requires multiple channels Correlation Coefficients (Typical values):
      1
      2
      3
      4
      5
      
          c_HW    c_HB    c_HWB   c_H
      c_HW     1.00   -0.15    0.82   0.05
      c_HB    -0.15    1.00   -0.73   0.02
      c_HWB    0.82   -0.73    1.00   0.08
      c_H      0.05    0.02    0.08   1.00
      

      7.4 Machine Learning in EFT Analysis

      Current Applications:

  8. Neural Network Amplitude Regression
    • Train on Monte Carlo samples with different Wilson coefficients
    • Interpolate amplitudes for arbitrary coefficient values
    • Speed up: 10³-10⁴× faster than full simulation
  9. Optimal Observable Construction
    • Use ML to find observables maximally sensitive to specific operators
    • Example: Neural networks identify angular distributions sensitive to anomalous triple gauge couplings
  10. Global Fit Optimization
    • Gaussian processes for likelihood surface mapping
    • Efficient exploration of high-dimensional Wilson coefficient space
    • Handles non-Gaussian posteriors naturally Concrete Example: SMEFT Analysis with ML
      1
      2
      3
      4
      5
      6
      7
      8
      9
      10
      11
      
      # Pseudocode for ML-enhanced EFT fitting
      class SMEFTAnalyzer:
       def __init__(self):
         self.amplitude_network = TrainedNeuralNetwork()
         self.likelihood_gp = GaussianProcess()
       def predict_observable(self, wilson_coeffs, kinematics):
         # Fast amplitude evaluation
         return self.amplitude_network(wilson_coeffs, kinematics)
       def global_fit(self, data):
         # Bayesian optimization using GP
         return self.likelihood_gp.maximize(data)
      

      Performance Metrics: - Traditional χ² fit: ~10⁴ likelihood evaluations - ML-enhanced fit: ~10² likelihood evaluations - Uncertainty quantification: Comparable to traditional methods Future Directions:

  11. Symbolic Regression for EFT
    • Discover optimal operator bases
    • Identify hidden correlations
    • Automate redundancy removal
  12. Anomaly Detection
    • Identify deviations from SM without assuming specific EFT
    • Model-independent searches for new physics
    • Real-time analysis at LHC
  13. Quantum Machine Learning
    • Quantum circuits for amplitude calculation
    • Potential exponential speedup for loop calculations
    • Currently limited to toy models Challenges and Limitations: - Training data quality crucial - Interpretability vs. performance trade-off - Systematic uncertainty quantification - Extrapolation beyond training region dangerous